Name:

Period:_____

Final Reivew Parabolas Part 2:

Steps to determine the y-intercept:

Example:

Find the y-intercept:

$$f(x) = 3x^2 + 3x - 11$$

Steps to determine the x-intercept(s):

Example:

Find the x-intercept(s):

$$f(x) = 5x - 10$$

Translations on Parabolas:

All Translations begin from the Parent Graph:

- 1) If there is a number being <u>added</u> in the parenthesis, the parabola is moving <u>Left</u>.
- 2) If there is a number being <u>subtracted</u> in the parenthesis, the parabola is moving <u>Right.</u>
- 3) If there is a number being <u>added</u> <u>outside of the parenthesis</u> then the parabola is moving <u>Up.</u>
- 4) If there is a number being <u>subtracted</u> <u>outside of the parenthesis</u> then the parabola is moving <u>Down.</u>
- 5) If the value of <u>a</u> is negative, that is, if x^2 is negative, (such as $-x^2$) or if there is a <u>negative sign in front of the</u> <u>parenthesis</u>, then the parabola opens down.

Examples:

1) Describe the Translation(s):

$$f(x) = (x+15)^2$$

$$f(x) = (x+4)^2$$

2) Describe the Translation(s):

$$f(x) = (x - 14)^2$$

$$f(x) = (x-5)^2$$

3) Describe the Translation(s):

$$f(x) = x^2 + 3$$

$$f(x) = (x - 3)^2 + 7$$

4) Describe the Translation(s):

$$f(x) = x^2 - 6$$

$$f(x) = (x+4)^2 - 1$$

5) Describe the Translation(s):

$$f(x) = -x^2$$

$$f(x) = -(x-3)^2 + 12$$

Practice Problems:

Find the y-intercept for each Quadratic:

1)
$$f(x) = x^2 + 3x - 11$$

2)
$$f(x) = -5x^2 - 3 + 5x$$

3)
$$f(x) = (x+1)^2$$

4)
$$f(x) = x(x-4) + 4$$

Find the x-intercept(s) for each Function:

$$1) f(x) = 5x - 5$$

$$2) f(x) = 24 + 12x$$

3)
$$f(x) = (x+1)^2$$

Describe the Transformation(s) for each Quadratic:

1)
$$f(x) = (x+1)^2 - 2$$

$$2) f(x) = x^2 - 3$$

3)
$$f(x) = -(x-5)^2$$

4)
$$f(x) = -(x+7)^2 - 6$$

Describe the Transformation and Graph:

$$f(x) = (x - 4)^2 + 1$$

